FACTORS OF ANIMAL IMMUNE REACTIVITY

P. N. Kosyakov and M. N. Reznikova

From the D. I. Ivanov Institute of Virology (Director: Prof. P. N. Kosyakov) Acad. Med. Sci. USSR and the Central Scientific Research Institute of Forensic Medicine (Director: Prof. V. I. Prozorovsky) USSR Ministry of Health, Moscow.

(Received December 12, 1955. Presented by Acting Member of the Acad. Med. Sci. USSR N. N. Zhukov-Verezhnikov).

The question of the factors determing immune reactivity of an animal has formed the object of study by a number of investigators. They noted [1, 3] that repeated immunization contributed to formation of antibodies. However M. I. Raisky was the first to make a proper assessment of the significance of this phenomenon for the process of immunogenesis. He established that as a result of initial immunization the animal organism undergoes a significant transformation, and thanks to this, acquires the capacity to respond, with a more intense precipitin-formation reaction, to repeated introduction of the same type of antigen.

The correctness of the law-governed process established by M. I. Raisky was then confirmed by his works and other teachings [1, 5, 6].

In order to study the immuno-biological law-governed principles underlying the process of formation of antibodies and also to clarify the causes and conditions influencing this process, we made an analysis of extensive experimental, material gathered during 15 years on sera containing precipitin obtained for forensic medicine purposes.

EXPERIMENTAL METHODS

We used in our study different varieties of rabbits (chinchilla, blues, albinos)—which were immunized with the blood serum of various species of animals—horse, ox, sheep, pig, cat, hen and also with human blood serum.

EXPERIMENTAL RESULTS

All the animals were by no means able to respond to immunization with a sharply marked antibody-formation reaction. 506 rabbits out of 2171, i.e., 23.3 per cent did not produce precipitins at a titer of 1: 1000 either as a result of initial or as a result of repeated immunization. This was a so-called relatively refractory or weakly immunogenic group of rabbits. 925 rabbits i.e., 42.6 per cent, produced precipitins at a sufficiently high titer (1:10,000 and over). Finally there was a fairly large group of experimental animals - 740 - i.e., 34.1 per cent, which responded with a precipitin formation reaction, which however, was at a comparatively low (1:1000 and 1:5000) titer. The cause of the variability in the immune reactivity of the various animals in response to introduction of the same antigen has so far not been established with certainty. Our knowledge on this question does not go beyond indisputably correct, but too general, concepts asserting the existence of individual immunobiological peculiarities of the animal organism.

However, as our investigations showed, besides individual peculiarities of the organism, of great importance for the immuno-reactivity of the animal is the species specificity of the antigens, used in immunization. This is demonstrated by Table 1.

TABLE 1

Formation of Precipitins in Rabbits in Relation to the Species Specificity of the Antigen.

	of	Results of immunization						
Species of albumin used for immunization	number o	Not produ- cing preci- pitatins		Producing precipitins at a titer				
	Total nur animals	15 3	Į.	1:10,000 and more 1:1000-1:50				
		Number of animals	% of total numbe	Number of animals	% of total number	Number of animals	total	
Serum of hen Serum of horse Serum of sheep Serum of pig Serum of ox Serum of human Serum of dog Serum of cat	93 243 177 271 245 863 172 107	10 35 27 46 43 231 65 49	10.7 14.4 15.3 16.9 17.9 26.8 37.8 45.8	100 140 125 299 56	67.8 48.1 56.5 51.7 51.0 34.6 32.5 23.4	20 91 50 85 77 333 51 33	21.5 37.5 28.2 31.4 31.1 38.6 29.7 30.8	

It is clear from Table 1 that in the largest number of experimental rabbits (89,3%) precipitins formed in response to immunization with serum albumins of hens. In this experiment only 10.7% did not produce an antibody.

Formation of precipitins proceeded actively in the rabbits in response to introduction of horse serum. Of 243 rabbits, only 35, i.e. 14.4% proved incapable of producing precipitins while the remaining group of experimental animals (85.6%) produced antibodies at a sufficiently high titer. Less often the rabbits formed precipitins upon immunization with sheep serum albumins (84.7%), pig (83.1%), ox (82.1%), human (73.2%) and in particular cases upon immunization with the serum of a dog (62.2%) and a cat (54.2%). Of 172 rabbits immunized with dog serum 65, i.e., 37.8%, did not produce precipitins, and of 107 experimental animals, immunized with cat serum, 49, i.e., 45.8% showed themselves to be incapable of producing antibodies in the same experimental conditions as in immunization of the rabbits with other serum albumins.

It is clear from Table 1 that the largest number (67.8%) of rabbits producing precipitin in the sera at the highest titer (1:10,000 and over) is achieved with immunization by the serum albumins of hens, somewhat less with immunization by the sheep serum albumins (56.5%), pig (51.7%), ox (51%), horse (48.1%).

As a result of immunization of the rabbits with the human blood serum precipitins at a high titer (1:10, 000) were obtained only in 34.6% of the animals, and an even smaller number of rabbits produced such sera upon immunization with dog serum albumins (32.5%) and in particular cases with cat serum albumins (23.4%).

The facts outlined give grounds for assuming that the capacity of the organism to respond with production of antibodies depends not only on the individual characteristics of the animal but on the species specificity of the antigen taken for immunization.

The serum albumins of a cat, dog and man were less effective antigenic stimuli for the rabbits than the serum albumins of a horse, ox, pig, sheep and in particular cases of a hen. The albumins of birds (hen), the farthest removed physiologically and hence antigenically from rabbits, proved to be the most effective antigenic stimulus. On the other hand, the serum albumins of a cat proved to be a less effective antigenic stimulus for the rabbits. Upon immunization of the rabbits with the cat albumins the number of animals giving precipitin sera at a high titer was almost three times less than with immunization by the hen serum albumins.

Our investigations also showed (Table 2) that the capacity of the organism to produce precipitins stands in a definite relationship to the weight of the immunized animal.

It will be seen from Table 2 that rabbits of the largest weight produced precipitin sera of high titer in relation to all the eight species of serum proteins without exception, with which the rabbits were immunized, which indicates the law-governed pattern of this phenomenon.

TABLE 2
Formation of Precipitins in Relation to Weight of Animal.

Species of albumin used for immunization	number of	Giving se of 1:10,0		Total number of	Giving serum at a titer of 1:10,000 and over	
	animals (weight from 1500 to 2000 g)	number of animals	% of total number	animals (weight 2000 g and over)	number of animals	% of total number
Serum of human Serum of horse Serum of ox Serum of sheep Serum of pig Serum of dog Serum of cat Serum of hen	294 83 83 67 92 48 35	77 28 26 36 35 17 7	26.2 33.7 31.3 53.7 38.0 35.4 20.0 64.7	473 145 159 99 169 106 81 52	163 85 97 60 103 43 30 42	34.4 58.6 61.0 60.6 60.9 40.6 37.0 80.8
Total	719	237	32.9	1284	623	48.5

The rabbits weighing between 1500 and 2000 g corresponded usually to 5-6 month old animals, consequently, one may speak of a less marked capacity to form antibodies in younger rabbits. The results of our observations on the dependence of precipitin formation on weight or age of the rabbits is in complete accord with the known facts in immunology [1] regarding the less marked immunoreactive properties in young animals than in old ones.

We set out in Table 3 the results of our investigation of the process of antibody formation in relation to the sex of animals.

TABLE 3

Formation of Antibodies in Relation to Sex of Animal.

Species of		771	Not pre		Producii	ng precipi	ecipitins, at a titer		
med for	Sex of animals	Total number of	precipitins num- % of		1:10,000 and more		1:1,000 and 1:5000		
	ammas	animals	ber of ani- mals	total num- Ler	number of animals	% of total number	number of animals	% of total number	
Serum	Male	392	95	24.3	166	42,3	131	33,4	
Human	Female	368	121	32.9	117	31,8	130	35,3	
Serum	Male	107	12	10.2	66	61.7	29	27,1	
Horse	Female	109	23	21.1	51	46,8	35	32,1	
Serum	Male	115	15	13.0	69	60.1	31	26,9	
Ox	Female	112	29	25.9	5 5	49.1	28	25,0	
Serum	Male	65	7	10.8	46	70,7	12	18,5	
Sheep	Female	94	20	21.3	53	56.4	21	22,3	
Serum	Male	123	16	13,0	72	58.6	35	28.4	
Pig	Female	142	30	21,1	76	53.6	36	25.3	
Serum	Male	74	29	39.2	28	37.8	17	23.0	
Dog	Female	88	32	36,4	31	35.2	25	28.4	
Serum	Male	55	22	40.3	19	34.5	14	25.5	
Cat	Female	52	23	44.2	13	25.0	16	30.8	
Serum Hen	Male Female	51 39	3 7	5,9 17,9	36 28	70,6 71.8	12 4	23,4	
Total	Male Female	982 1004	199 285	20,3	502 424	51.1 42.2	281 295	28.6 29.4	

It is clear from Table 3 that upon immunization with the proteins of hens both males and females just as frequently produced precipitins at a high titer. Upon immunization with dog proteins the percentage of less active rabbits was slightly higher in the males (39.2%) than in the females (36.4%).

As our material demonstrates there is no essential difference between male and female rabbits in their capacity to form precipitins with serum albumins. The slight difference existing between them may be attributed to such causes as pregnancy, birth, feeding of young, factors with an indisputable influence on the function of antibody formation. However, we did not succeed in following up the significance of these factors.

Our investigations showed that the organism's capacity to respond with production of precipitins depends also on the repetitiveness of the immunizing stimulus produced by the same type of antigen.

TABLE 4

Formation of Precipitins as a Result of Initial Immunization and of Re-immunization.

	Serum obtained at titer 1:10,000							
Species of albumin used for immunization	Total number of animals	after 1st co		after re-immunization				
		number of animals	% of total number	number of animals	% of total number			
Serum of ox Serum of sheep Serum of pig Serum of horse Serum of human Serum of dog Serum of cat Serum of hen	245 177 271 243 863 172 107 93	36 29 60 26 155 4 6	14.7 16.4 22.1 10.7 17.9 2.3 5.6 18.3	125 100 140 117 299 56 25 63	51.0 56.5 51.7 48.1 34.6 32.5 23.4 67.8			
Total	2171	333	15,3	925	42.6			

A 2, 3, or 4-fold or larger increase in the immuno-reactivity of the animals as a result of staggered (in 3 weeks, 2-4 months) re-immunization, as is clear from Table 4, was seen in all groups of rabbits, independent of the species specificity of the antigen applied for immunization. These findings testify to the constancy of the phenomenon and completely concur with the lawful sequence observed by M. I. Raisky in 1915 - increase in immuno-reactivity of the organism as a result of initial immunizing stimulation.

Thus, our investigations showed that the capacity of the organism to produce precipitins depends not only on the individual features of the animal but is to a considerable degree also determined by the species specificity of the antigen, used in immunization, weight (age) of the immunized animal, repetitive nature of the immunizing stimulation by one and the same type of antigen and also to a certain extent by the sex of the animal.

LITERATURE CITED

- [1] Zdrodovsky, P. F. Problem of Reactivity in the Study of Infection and Immunity.* (State Med. Press Moscow, 1950).
 - [2] Raisky, M. I. Kharkov. Med. Zhur. 20, p. 142 (1915).
 - [3] Cole, 1904, Cited by P. F. Zdrodovsky, p. 125.
 - [4] Dungern, 1903, Cited by P. F. Zdrodovsky.
 - [5] Glenny, Active Immunization: The System of Microorganism (London, 1930).
- [6] Ramon, G. and Zoeller, Ch., "L'anatoxine tetanique et l'immunisation active de l'homme vis-a-vis du tetanos," Ann. Inst. Pasteur, 41, 803 (1927).